Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides

نویسندگان

  • Haoliang Chen
  • Lulu Lin
  • Farman Ali
  • Minghui Xie
  • Guangling Zhang
  • Weihua Su
چکیده

Bradysia odoriphaga (Diptera: Sciaridae) is the most important pest of Chinese chive. Insecticides are used widely and frequently to control B. odoriphaga in China. However, the performance of the insecticides chlorpyrifos and clothianidin in controlling the Chinese chive maggot is quite different. Using next generation sequencing technology, different expression unigenes (DEUs) in B. odoriphaga were detected after treatment with chlorpyrifos and clothianidin for 6 and 48 h in comparison with control. The number of DEUs ranged between 703 and 1161 after insecticide treatment. In these DEUs, 370-863 unigenes can be classified into 41-46 categories of gene ontology (GO), and 354-658 DEUs can be mapped into 987-1623 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expressions of DEUs related to insecticide-metabolism-related genes were analyzed. The cytochrome P450-like unigene group was the largest group in DEUs. Most glutathione S-transferase-like unigenes were down-regulated and most sodium channel-like unigenes were up-regulated after insecticide treatment. Finally, 14 insecticide-metabolism-related unigenes were chosen to confirm the relative expression in each treatment by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). The results of qRT-PCR and RNA Sequencing (RNA-Seq) are fairly well-established. Our results demonstrate that a next-generation sequencing tool facilitates the identification of insecticide-metabolism-related genes and the illustration of the insecticide mechanisms of chlorpyrifos and clothianidin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Housekeeping Genes for Quantitative Real-Time PCR Analysis of Bradysia odoriphaga (Diptera: Sciaridae)

The soil insect Bradysia odoriphaga (Diptera: Sciaridae) causes substantial damage to Chinese chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga) have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR). This study was focused on identifying the expression stability of 12 candidate housekeeping genes in B. odoripha...

متن کامل

Biological Activity of trans-2-Hexenal Against Bradysia odoriphaga (Diptera: Sciaridae) at Different Developmental Stages

trans-2-Hexenal, one of the C6 green leaf volatiles, is potentially useful for the control of Bradysia odoriphaga Yang et Zhang. In this study, the biological activity of trans-2-hexenal on B. odoriphaga was assessed in the laboratory. trans-2-Hexenal was observed to kill B. odoriphaga in different developmental stages at a relatively low concentration under fumigation. The respiration rate in ...

متن کامل

Sex- and Tissue-Specific Expression Profiles of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga (Diptera: Sciaridae)

Citation: Zhao Y, Ding J, Zhang Z, Liu F, Zhou C and Mu W (2018) Sexand Tissue-Specific Expression Profiles of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga (Diptera: Sciaridae). Front. Physiol. 9:107. doi: 10.3389/fphys.2018.00107 Sexand Tissue-Specific Expression Profiles of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga (Diptera:...

متن کامل

Transcriptome Analysis and Discovery of Genes Relevant to Development in Bradysia odoriphaga at Three Developmental Stages

Bradysia odoriphaga (Diptera: Sciaridae) is the most important pest of Chinese chive (Allium tuberosum) in Asia; however, the molecular genetics are poorly understood. To explore the molecular biological mechanism of development, Illumina sequencing and de novo assembly were performed in the third-instar, fourth-instar, and pupal B. odoriphaga. The study resulted in 16.2 Gb of clean data and 47...

متن کامل

Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole

Benzothiazole, a microbial secondary metabolite, has been demonstrated to possess fumigant activity against Sclerotinia sclerotiorum, Ditylenchus destructor and Bradysia odoriphaga. However, to facilitate the development of novel microbial pesticides, the mode of action of benzothiazole needs to be elucidated. Here, we employed iTRAQ-based quantitative proteomics analysis to investigate the eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017